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Abstract

Cardiac auscultation provides an efficient and cost-
effective way for cardiac disease pre-screening. The
George B. Moody PhysioNet Challenge 2022 aimed to de-
tect heart murmurs and clinical outcomes with heart sound
recordings from multiple auscultation locations. Our team
HearHeart proposed a lightweight convolutional neural
network (CNN) to detect heart murmurs and a random
forest model to classify clinical outcomes. 128 Mel-
spectrogram features and wide features like the socio-
demographic data and statistical features are extracted.
Different techniques are employed to migrate the data im-
balance and model the overfitting problem. We used two
data augmentation methods, noise injection and spectro-
gram augmentation in time and frequency domain to in-
crease the training samples and avoid overfitting during
training. Besides, weighted loss functions are applied to
both tasks to deal with data imbalance. In the end, we en-
sembled the models from cross-validation and used voting
for the final classification. We achieved a murmur score of
0.791, and a clinical outcome score of 11731.64 on 5-fold
cross-validation in the hidden validation set. While on the
hidden test set, we achieved a murmur score of 0.780, and
a clinical outcome score of 12110, placing our team 1st
and 10th in the challenge tasks, respectively.

1. Introduction

Cardiovascular diseases are the leading cause of death
in the world [1]. Cardiac auscultation via stethoscopes is
one of the most important and cost-effective tools for pre-
screening cardiovascular diseases. Two fundamental heart
sound components, the first (S1) and second (S2) heart
sounds, can be heard through cardiac auscultation. The S1
results from the closure of the mitral and tricuspid valves,

while S2 is caused by the aortic and pulmonary valves.
Besides these sounds, murmurs can be heard in the auscul-
tation process and their presence can indicate irregularities
of the heart [2, 3].

Therefore, the detection and classification of heart mur-
murs are essential for an accurate clinical diagnosis. How-
ever, auscultation interpretation requires long-year expert
knowledge. Computer-aided auscultation systems based
on phonocardiogram (PCG) signals have gained increas-
ing interest in recent years [4]. Some studies have investi-
gated computer-aided murmur detection [5–9]. However,
some downfalls of these methods are the small size of the
datasets used and the need for a reliable heart sound seg-
mentation.

In this context, we developed a lightweight convolu-
tional neural network (CNN) model for murmur and a ran-
dom forest model for clinical outcome classification in the
PCG recordings for the George B. Moody PhysioNet Chal-
lenge 2022 [10], while using the largest pediatric heart
sound dataset [11] and avoiding primary heart sound seg-
mentation. The main contribution of our work is a robust
method that can be translated to the clinical environment,
which contains challenges such as diverse types of noise
and usually limited resources.

2. Methods

2.1. Data Introduction

The challenge used 60% of the CirCor DigiScope
Dataset [11], a public dataset made of pediatric heart sound
recordings. The dataset contains 5,282 recordings of 1,568
patients under 21 years old, which are recorded from 4
main auscultation locations: pulmonary valve (PV), aor-
tic valve (AV), mitral valve (MV), tricuspid valve (TV),
and other (Phc). Additionally, the socio-demographic data
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of each patient is provided.
We can observe in Fig. 1 the data imbalance between

the heart murmurs classes, in which the absent class con-
tains more samples compared to the present and unknown
classes. Besides, we can also confirm that both tasks of
murmur and clinical outcome classification are not corre-
lated.

Figure 1. Data distribution in murmur and outcome.

2.2. Data Pre-processing

Since the recordings vary in duration from 4.8 to 80.4
seconds (mean=22.9±7.4 s), we selected a fixed duration
of 15s for each recording. During training, we randomly
cropped recordings that exceeded the defined length, while
the shorter ones were zero-padded. As for the validation,
zero padding was also applied to the shorter recordings as
in the training process. Whereas, the longer recordings
were segmented into patches with an overlap of 7.5 sec-
onds to increase the number of validation samples.

Next, we extracted from the selected recording a Mel-
spectrogram, with 128 Mel bands within the range of 25-
2,000 Hz, followed by a Hamming window with a window
size of 50 ms and a frameshift of 25 ms. For each record-
ing, we also extract wide features. One part of the wide
features is composed of age, gender, and pregnancy status
and are embedded using one-hot vectors. While the other
part of the wide features includes statistical features such
as zero-crossing rate, spectral centers, and spectral band-
width.

2.3. Data Augmentation

Two data augmentation approaches are applied to re-
duce overfitting. At first noise injection is used, where

Figure 2. Spectrogram augmentation. Top: original Mel-
spectrogram, Middle: Mel-spectrogram after masking in
frequency domain, Bottom: Mel-spectrogtram after mask-
ing in time and frequency domain

zero mean 15 dB Gaussian noise is added to the record-
ing with the possibility of 0.5 during training. Then spec-
trogram augmentation on frequency and time domain is
conducted, where randomly selected multiply blocks of
frequency channels and blocks of time steps are masked.
Fig.2 shows one example of spectrogram augmentation in
the frequency and time domain.

2.4. Murmur Model Structure

We propose a lightweight convolutional neural network
(CNN) architecture composed of two branches (Fig. 3)
to classify heart murmurs. The CNN uses the Mel-
spectrogram as input in the main branch, where it is con-
secutively fed into convolutional blocks, while the second
branch feds the wide features into a fully connected layer
(FC). The outputs of the main and secondary branches are
concatenated and fed to another FC layer for the final mur-
mur classification.

2.5. Clinical Outcome Model

For the clinical outcome classification, we choose the
random forest classifier since it was shown to hold stable
performance despite the presence of noisy data [12], which
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Figure 3. Illustration of the proposed model structure. The
network uses the Mel-spectrogram and the wide features as
inputs and returns as outputs the heart murmurs classifica-
tion.

is the case for the used data. The random forest consists of
a collection of tree-structured classifiers, where each tree
contributes with a unit vote for the final classification [12].
However, as with any ensemble method, its performance
also relies on the strength of each tree and the number of
trees.

With these considerations, we performed a grid search
to optimize hyperparameters in a 5-fold cross-validation
style using each fold to evaluate the performance for the
clinical outcome classification task.

2.6. Training Details

We employed a 5-fold patient-wise cross-validation
technique to reduce model variance. We also used a
weighted cross-entropy loss function for murmur classifi-
cation, where we attribute the weights 5, 3, and 1 to the
present, unknown, and absent classes, respectively. We
used a weighted loss function due to the higher cost of mis-
classification of the present class.

For the murmur classification task, we used a trained
CNN with a batch size of 24. The loss function is opti-
mized with the Adam optimizer with an initial learning rate
of 0.001. We also used multi-step learning rate optimiza-
tion, which reduces tenfold the learning rate at the 30th,
50th, and 80th epochs. Early stopping with the criteria of
best challenge score is employed.

While for the clinical outcome classification, the ran-
dom forest with the best hyperparameters found in the grid
search has been used. The hyperparameter optimization
resulted in a random forest with 100 trees, where each tree
could have the maximum number of leaves in each node of
36. Similar to the murmur classification task, we also at-
tribute weights 5 and 1 to the abnormal and normal classes,
respectively, due to the higher cost of misclassification of
the abnormal class.

3. Results and Discussion

The results of the 5-fold cross-validation are shown in
Table1. In addition to murmur and outcome scores, we
also report the F1 score and accuracy of each class in two
tasks.

The challenge used different scoring systems for rank-
ing the outputs. For the classification task, a weighted ac-
curacy is used as score function. While for the clinical out-
come classification task, the metric used was a non-linear
function that represents the cost of the treatment. There-
fore, for the first task, the score should be as high as pos-
sible, while for the second, the score should be as low as
possible. More information on the scoring system can be
found in the challenge description [10].

Our proposed method achieved an average murmur
score of 0.793. Further analysis of the results showed an
average F1 score of 0.119 for the unknown class, possibly
due to insufficient samples for this class, and could not be
solved by only attributing more weights to counterbalance
the lack of training samples.

For the clinical classification task, our method achieved
an average score of 11731. We could also observe al-
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Table 1. Model performance on 5-fold cross-validation, hidden validation, and hidden test sets.
Local cross validation Hidden validation set Hidden test set Ranking

Murmur score 0.793±0.03 0.747 0.78 1st
Clinical Outcome score 11731±285 9903 12110 10th

though the method achieved an average accuracy of 0.914
for the abnormal class, it was only 0.195 for the normal
class. Since the clinical outcome annotations are made by
medical experts considering extra information, like patient
history, physical examination, and echocardiogram report,
we believe that only using PCG recordings could not be
sufficient for accurate clinical outcome classification.

Moreover, we submitted an ensemble of the trained
models from cross-validation for the challenge. The results
from all evaluations, as well as the ranking of our solutions
in the challenge, can be seen in Table 1. The outstanding
performance of our method in the hidden validation and
test set demonstrated that our method can generalize and
perform well in presence of new data.

4. Conclusion

In this paper, we proposed a lightweight CNN model
for murmur detection and a random forest model for clin-
ical outcome classification based on PCG recordings. We
extracted statistical and frequency-domain features from
each recording as part of wide features vector, which is
concatenated with features learned from the CNN. In the
end, we achieved promising results for both tasks, indicat-
ing that our models can be suitable for real-time applica-
tion in the clinical environment. Furthermore, their com-
putational efficiency and robust performance can improve
cardiac auscultation and pre-screening routines.
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